Header Top
Logo
Mercoledì 17 Luglio 2019

Logo
Corpo Pagina
Breadcrumbs
colonna Sinistra
Martedì 28 maggio 2019 - 11:26

La Terra vista dallo spazio, un nuovo metodo per mappe accurate

Sviluppato da UniTrento per progetto Esa su immagini satellitari
La Terra vista dallo spazio, un nuovo metodo per mappe accurate

Roma, 28 mag. (askanews) – Centri abitati, specchi d’acqua, boschi di conifere. Il Trentino si riconosce anche dallo spazio. Lo dimostrano le immagini e le mappe della regione pubblicate sul sito dell’Agenzia spaziale europea (Esa) per dare notizia di un metodo innovativo sviluppato da Claudia Paris e Lorenzo Bruzzone dell’Università di Trento, nell’ambito di un progetto di ricerca finanziato Esa e coordinato dal laboratorio di telerilevamento (RSLab) dell’Ateneo di Trento, per integrare le informazioni fornite da serie temporali di immagini satellitari e dati estratti in modo automatico da mappe tematiche territoriali obsolete. Risultato? Mappe disegnate da 786 chilometri di distanza, ma accurate e affidabili oltre il 93 per cento.

Il nuovo metodo – speiga l’Ateneo – risponde alle esigenze di un monitoraggio rapido, continuo e accurato del territorio che possa studiare l’evoluzione della copertura della superficie terrestre dovuta sia ad attività antropica sia a fenomeni naturali e rientra in un programma scientifico dell’Agenzia spaziale europea. Lorenzo Bruzzone, professore del Dipartimento di Ingegneria e Scienza dell’Informazione dell’Ateneo di Trento, dove è responsabile del laboratorio di telerilevamento (RSLab), sottolinea: “Il nostro progetto, cui partecipa anche la Fondazione Bruno Kessler, ha come obiettivo lo sviluppo di metodi innovativi basati su tecniche di riconoscimento automatico per l’elaborazione delle immagini satellitari fornite dalla costellazione di satelliti Sentinel-2 del programma europeo Copernicus”.

“I satelliti per l’osservazione della Terra – racconta – sono ormai un’irrinunciabile sorgente di informazione per studiare l’evoluzione della copertura della superficie terrestre. Tali satelliti forniscono enormi moli di dati (big data) che devono poi essere elaborate con sofisticate tecniche automatiche che sono sempre più basate su paradigmi di intelligenza artificiale e machine learning. Nell’ambito del progetto abbiamo sviluppato tecniche che sono state applicate al monitoraggio della deforestazione in Indonesia (dovuta alla devastazione legata alla produzione di olio di palma), all’agricoltura di precisione da satellite e all’aggiornamento delle mappe contenenti i tematismi territoriali (sono mappe che descrivono l’uso del suolo). In quest’ultimo ambito l’aggiornamento delle mappe del Trentino è stato considerato come banco di prova per le tecniche sviluppate che attualmente stiamo applicando per generare mappe aggiornate con 10 metri di dettaglio di tutto il territorio italiano”.

Uno dei risultati ottenuti nel progetto (presentati la settimana scorsa al Living Planet Symposium dell’Esa) è l’articolo, dal titolo “A Novel Approach to the Unsupervised Update of Land-Cover Maps by Classification of Time Series of Multispectral Images”, scritto da Claudia Paris e Lorenzo Bruzzone dell’Università di Trento e da Diego Fernandez-Prieto dell’Agenzia spaziale europea, pubblicato sulla rivista “IEEE Transactions on Geoscience and Remote Sensing”. “Nell’articolo – spiega Caludia Paris – descriviamo un metodo inedito per integrare le informazioni multi-temporali fornite da serie temporali di immagini satellitari Sentinel-2 e i dati estratti in modo automatico da mappe obsolete. La svolta consiste nella tecnica che abbiamo sviluppato che consente di elaborare in modo automatico ed efficiente immagini satellitari recenti e mappe obsolete per ottenere mappe aggiornate senza l’intervento diretto di esperti (che richiederebbe lunghi tempi di elaborazione e notevoli risorse)”. Si tratta di un ulteriore passo avanti nello sfruttamento della tecnologia satellitare integrata con i più recenti sviluppi dell’intelligenza artificiale per l’aggiornamento preciso e sistematico delle informazioni territoriali.

CONDIVIDI SU:
articoli correlati
ARTICOLI CORRELATI:
Contenuti sponsorizzati
Barra destra

Torna su